Python XRP Price Prediction

XRP is a cryptocurrency that powers the Ripple network, which is a system for cross-border payments. Predicting XRP price can be done using Python and machine learning techniques, such as regression or neural networks. Here is an example of a code snippet that uses a neural network to predict XRP price based on historical data:

# Import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM

# Load data
df = pd.read_csv('XRP-USD.csv')
df = df.dropna()
df = df[['Close']]

# Scale data
scaler = MinMaxScaler(feature_range=(0,1))
df = scaler.fit_transform(df)

# Split data into train and test sets
train_size = int(len(df) * 0.8)
test_size = len(df) - train_size
train_data, test_data = df[0:train_size,:], df[train_size:len(df),:]

# Create x_train and y_train data sets
x_train = []
y_train = []

for i in range(60,len(train_data)):
    x_train.append(train_data[i-60:i,0])
    y_train.append(train_data[i,0])

x_train,y_train = np.array(x_train),np.array(y_train)

# Reshape x_train for LSTM model
x_train = np.reshape(x_train,(x_train.shape[0],x_train.shape[1],1))

# Create LSTM model
model = Sequential()
model.add(LSTM(units=50,return_sequences=True,input_shape=(x_train.shape[1],1)))
model.add(LSTM(units=50))
model.add(Dense(25))
model.add(Dense(1))

# Compile and fit model
model.compile(optimizer='adam',loss='mean_squared_error')
model.fit(x_train,y_train,batch_size=32,epochs=100)

# Create x_test and y_test data sets
x_test = []
y_test = test_data[60:len(test_data),:]
for i in range(60,len(test_data)):
    x_test.append(test_data[i-60:i,0])

x_test = np.array(x_test)

# Reshape x_test for LSTM model
x_test = np.reshape(x_test,(x_test.shape[0],x_test.shape[1],1))

# Get model predictions
predictions = model.predict(x_test)
predictions = scaler.inverse_transform(predictions)

# Plot predictions vs actual prices
plt.figure(figsize=(16,8))
plt.title('XRP Price Prediction')
plt.xlabel('Date',fontsize=18)
plt.ylabel('Close Price USD ($)',fontsize=18)
plt.plot(y_test)
plt.plot(predictions)
plt.legend(['Actual','Predicted'],loc='lower right')
plt.show()

If you have any questions about this code, you can drop a line in comment.

Comments

Popular posts from this blog

Python chr() Built in Function

Stock Market Predictions with LSTM in Python

Collections In Python

Python Count Occurrence Of Elements

Python One Liner Functions